This study was conducted to verify the relationships between the expression values of stress-related markers and their production performances in 25 strains of Korean domestic chicken breeds. For stress response markers, the amount of telomeric DNA; expression levels of heat shock protein (HSP)-70, HSP-90α, and HSP-90β; and comet scores were analyzed. Production performances were measured by the survival rate, body weights, days at first egg laying, egg weight and hen housed egg production. The results showed that the production traits and values of stress-related markers showed significant differences between strains. In general, the stress response of pure bred chickens with heavy weights was relatively high, while that of hybrid chickens with light weights was relatively low. The correlation coefficients between telomere contents and body weights showed that there were weak negative relationships. However, the correlations of telomere content with the survival rate and egg production were weakly positive after 20 weeks old. The expression levels of HSP genes and DNA damage rate (comet scores) were positively correlated to body weight, but were negatively correlated to the survival rate and egg production. The results implied that increasing body weight was associated with increasing HSPs expression and the DNA damage rate was associated with decreasing telomere content. In addition, increasing HSPs expression and the DNA damage rate decreased the survival rate and egg production, but the relationships with the telomere content was the reverse. Correlations among the stress-related markers showed that there were significant correlation coefficients between all of the marker values. HSPs expression was negatively correlated to the telomere content, while it was positively correlated to the DNA damage rate. There was a highly negative correlation between the telomere content and DNA damage rate. In conclusion, increasing the HSP values and DNA damage rate can promote telomere reduction, which led to a decrease in disease resistance and robustness of the chicken. Thus, increasing the stress response was verified to adversely affect the laying performance and viability of chickens.