ATP-binding cassette transporter B1 (ABCB1; P-glycoprotein; multidrug resistance protein 1) is an adenosine triphosphate (ATP)-dependent efflux transporter located in the plasma membrane of many different cell types. Numerous structurally unrelated compounds, including drugs and environmental toxins, have been identified as substrates. ABCB1 limits the absorption of xenobiotics from the gut lumen, protects sensitive tissues (e.g. the brain, fetus and testes) from xenobiotics and is involved in biliary and renal secretion of its substrates. In recent years, a large number of polymorphisms of the ABCB1 [ATP-binding cassette, sub-family B (MDR/TAP), member 1] gene have been described. The variants 1236C>T (rs1128503, p.G412G), 2677G>T/A (rs2032582, p.A893S/T) and 3435C>T (rs1045642, p.I1145I) occur at high allele frequencies and create a common haplotype; therefore, they have been most widely studied. This review provides an overview of clinical studies published between 2002 and March 2015. In summary, the effect of ABCB1 variation on P-glycoprotein expression (messenger RNA and protein expression) and/or activity in various tissues (e.g. the liver, gut and heart) appears to be small. Although polymorphisms and haplotypes of ABCB1 have been associated with alterations in drug disposition and drug response, including adverse events with various ABCB1 substrates in different ethnic populations, the results have been majorly conflicting, with limited clinical relevance. Future research activities are warranted, considering a deep-sequencing approach, as well as well-designed clinical studies with appropriate sample sizes to elucidate the impact of rare ABCB1 variants and their potential consequences for effect sizes.