Propafenone is a class 1C antiarrhythmic agent which is administered as a racemate of S(+)- and R(-)-enantiomers. It is well absorbed and is predominantly bound to alpha 1-acid glycoprotein in the plasma. The enantiomers display stereoselective disposition characteristics, the R-enantiomer being cleared more quickly. The hepatic metabolism of propafenone is polymorphic and genetically determined: about 10% of Caucasians have a reduced capacity to hydroxylate the drug. This polymorphic metabolism accounts for the marked interindividual variability in the relationships between dose and concentration, and between concentration and pharmacodynamic effects. During long term administration, the metabolism is saturable in patients with the 'extensive metaboliser' phenotype, leading to accumulation of the parent compound. Propafenone blocks fast inward sodium channels in a frequency-dependent manner, and also has moderate beta-blocking effects. Both the enantiomers and the 5-OH metabolite have a potency to block sodium channels comparable with that of the parent compound. The S-enantiomer is a more potent beta-antagonist than the R-enantiomer. Propafenone typically slows conduction markedly but only modestly prolongs refractoriness. These cardiac effects are determined by the extent of its myocardial accumulation. The drug should be used with caution in patients with serious structural heart disease, as it may cause or aggravate life-threatening arrhythmias. Significant interactions occur when propafenone is coadministered with other drugs. It increases the plasma concentrations of digoxin, warfarin, metoprolol and propranolol as well as enhancing their respective pharmacodynamic effects. Doses of these drugs should therefore be decreased if they are coadministered with propafenone.