Sorsby fundus dystrophy (SFD), an autosomal dominant, fully penetrant, degenerative disease of the macula, is manifested by symptoms of night blindness or sudden loss of visual acuity, usually in the third to fourth decades of life due to choroidal neovascularization (CNV). SFD is caused by specific mutations in the Tissue Inhibitor of Metalloproteinase-3, (TIMP3) gene. The predominant histo-pathological feature in the eyes of patients with SFD are confluent 20-30 m thick, amorphous deposits found between the basement membrane of the retinal pigment epithelium (RPE) and the inner collagenous layer of Bruch's membrane. SFD is a rare disease but it has generated significant interest because it closely resembles the exudative or "wet" form of the more common age-related macular degeneration (AMD). In addition, in both SFD and AMD donor eyes, sub-retinal deposits have been shown to accumulate TIMP3 protein. Understanding the molecular functions of wild-type and mutant TIMP3 will provide significant insights into the patho-physiology of SFD and perhaps AMD. This review summarizes the current knowledge on TIMP3 and how mutations in TIMP3 cause SFD to provide insights into how we can study this disease going forward. Findings from these studies could have potential therapeutic implications for both SFD and AMD.