Genetic correlations between reproduction and production traits were estimated in swine. Reproduction traits investigated were age at first service (AFS), number of live-born piglets in the first litter (NBA1), interval from weaning to first service after first litter (WTS1), number of live-born piglets in the second litter (NBA2), and interval from weaning to first service after the second litter (WTS2). Females generating the data were Norwegian Landrace born in nucleus herds between 1990 and 2000, and the number of records ranged from 13,792 to 56,932. Genetic correlations were estimated among the main production traits in the breeding goal: adjusted age at 100 kg live weight (A100), percentage of lean meat content (LMC), individual feed consumption from 25 to 100 kg (FC), and bacon side quality (BSQ). Average adjusted backfat thickness (BF) was included as a production trait. The A100 and BF traits were recorded on gilts on-farm with 190,454 records, whereas LMC, BSQ, and FC were recorded on-station with the number of records ranging from 12,487 to 12,992. Analyses were carried out with a multivariate animal model using average information restricted maximum likelihood procedures by first running each reproduction trait with A100 and BF, followed by each reproduction trait with LMC, BSQ, and FC. Average heritabilities for reproduction traits were as follows: AFS (0.38), NBA1 (0.11), WTS1 (0.06), NBA2 (0.12), and WTS2 (0.03); and for production traits: A100 (0.30), BF (0.44), FC (0.22), LMC (0.58), and BSQ (0.23). The highest genetic correlation was estimated between A100 and AFS (r(g)= 0.68), also resulting in a positive genetic correlation between FC and AFS. Growth (A100) was negatively (i.e., unfavorably) genetically correlated to NBA1 and NBA2 (r(g) = 0.60 and rg = 0.42 respectively), and so the genetic correlation to FC also became unfavorable (r(g)= 0.23 and r(g) = 0.20). Single-trait selection for enhanced LMC would also affect NBA1 and NBA2 unfavorably (r(g)= -0.12 and r(g)= -0.24). Correlations between BF at 100 kg live weight and reproduction traits were close to zero; however, a low genetic correlation between BF and WTS1 was obtained (r(g)= -0.12), indicating that selection toward reduced BF at 100 kg live weight may have an unfavorable impact on WTS1.