Understanding patterns of genetic structure and adaptive variation in natural populations is crucial for informing conservation and management. Past genetic research using 11 microsatellite loci identified six genetic stocks of lake whitefish (Coregonus clupeaformis) within Lake Michigan, USA. However, ambiguity in genetic stock assignments suggested those neutral microsatellite markers did not provide adequate power for delineating lake whitefish stocks in this system, prompting calls for a genomics approach to investigate stock structure. Here, we generated a dense genomic dataset to characterize population structure and investigate patterns of neutral and adaptive genetic diversity among lake whitefish populations in Lake Michigan. Using Rapture sequencing, we genotyped 829 individuals collected from 17 baseline populations at 197,588 SNP markers after quality filtering. Although the overall pattern of genetic structure was similar to the previous microsatellite study, our genomic data provided several novel insights. Our results indicated a large genetic break between the northwestern and eastern sides of Lake Michigan, and we found a much greater level of population structure on the eastern side compared to the northwestern side. Collectively, we observed five genomic islands of adaptive divergence on five different chromosomes. Each island displayed a different pattern of population structure, suggesting that combinations of genotypes at these adaptive regions are facilitating local adaptation to spatially heterogenous selection pressures. Additionally, we identified a large linkage disequilibrium block of ~8.5 Mb on chromosome 20 that is suggestive of a putative inversion but with a low frequency of the minor haplotype. Our study provides a comprehensive assessment of population structure and adaptive variation that can help inform the management of Lake Michigan's lake whitefish fishery and highlights the utility of incorporating adaptive loci into fisheries management.