RAVEN is a commonly used MATLAB toolbox for genome-scale metabolic model (GEM) reconstruction, curation and constraint-based modelling and simulation. Here we present RAVEN Toolbox 2.0 with major enhancements, including: (i) de novo reconstruction of GEMs based on the MetaCyc pathway database; (ii) a redesigned KEGG-based reconstruction pipeline; (iii) convergence of reconstructions from various sources; (iv) improved performance, usability, and compatibility with the COBRA Toolbox. Capabilities of RAVEN 2.0 are here illustrated through de novo reconstruction of GEMs for the antibiotic-producing bacterium Streptomyces coelicolor. Comparison of the automated de novo reconstructions with the iMK1208 model, a previously published high-quality S.coelicolor GEM, exemplifies that RAVEN 2.0 can capture most of the manually curated model. The generated de novo reconstruction is subsequently used to curate iMK1208 resulting in Sco4, the most comprehensive GEM of S. coelicolor, with increased coverage of both primary and secondary metabolism. This increased coverage allows the use of Sco4 to predict novel genome editing targets for optimized secondary metabolites production. As such, we demonstrate that RAVEN 2.0 can be used not only for de novo GEM reconstruction, but also for curating existing models based on up-todate databases. Both RAVEN 2.0 and Sco4 are distributed through GitHub to facilitate usage and further development by the community.
Author summaryCellular metabolism is a large and complex network. Hence, investigations of metabolic networks are aided by in silico modelling and simulations. Metabolic networks can be derived from whole-genome sequences, through identifying what enzymes are present and connecting these to formalized chemical reactions. To facilitate the reconstruction of genome-scale models of metabolism (GEMs), we have developed RAVEN 2.0. This versatile toolbox can reconstruct GEMs fast, through either metabolic pathway databases KEGG and MetaCyc, or from homology with an existing GEM. We demonstrate RAVEN's functionality through generation of a metabolic model of Streptomyces coelicolor, an antibiotic-producing bacterium. Comparison of this de novo generated GEM with a previously manually curated model demonstrates that RAVEN captures most of the previous model, and we subsequently reconstructed an updated model of S. coelicolor: Sco4. Following, we used Sco4 to predict promising targets for genetic engineering, which can be used to increase antibiotic production.