IntroductionThe APETALA2/ethylene response factor (AP2/ERF) superfamily plays a significant role in regulating plant gene expression in response to growth and development. To date, there have been no studies into whether the ramie AP2/ERF genes are involved in the regulation of flower development.MethodsHere, 84 BnAP2/ERF members were identified from the ramie genome database, and various bioinformatics data on the AP2/ERF gene family, structure, replication, promoters and regulatory networks were analysed. BnAP2-12 was transferred into Arabidopsis through the flower-dipping method.ResultsPhylogenetic analysis classified the 84 BnAP2/ERF members into four subfamilies: AP2 (18), RAV (3), ERF (42), and DREB (21). The functional domain analysis of genes revealed 10 conserved motifs. Genetic mapping localised the 84 members on 14 chromosomes, among which chromosomes 1, 3, 5, and 8 had more members. Collinearity analysis revealed that 43.37% possibly resulted from replication events during the evolution of the ramie genome. Promoter sequence analysis identified classified cis-acting elements associated with plant growth and development, and responses to stress, hormones, and light. Transcriptomic comparison identified 3,635 differentially expressed genes (DEGs) between male and female flowers (1,803 and 1,832 upregulated and downregulated genes, respectively). Kyoto Encyclopaedia of Genes and Genomes pathway analysis categorised DEGs involved in metabolic pathways and biosynthesis of secondary metabolites. Gene Ontology enrichment analysis further identified enriched genes associated with pollen and female gamete formations. Of the 84 BnAP2/ERFs genes, 22 and 8 upregulated and downregulated genes, respectively, were present in female flowers. Co-expression network analysis identified AP2/ERF members associated with flower development, including BnAP2-12. Subcellular localisation analysis showed that the BnAP2-12 protein is localised in the nucleus and cell membrane. Overexpression BnAP2-12 delayed the flowering time of Arabidopsis thaliana.ConclusionThese findings provide insights into the mechanism of ramie flower development.