In the realm of agricultural sustainability, the utilization of plant genetic resources (PGRs) for enhanced disease resistance is paramount. Preservation efforts in genebanks are justified by their potential contributions to future crop improvement. To capitalize on the potential of PGRs, we focused on a barley core collection from the German ex situ genebank, and contrasted it with a European elite collection. The phenotypic assessment included 812 PGRs and 298 elites with a particular emphasis on four disease traits (Puccinia hordei, Blumeria graminis hordei, Ramularia collo-cygni, and Rhynchosporium commune). An integrated genome-wide association study, employing both Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) and a linear mixed model, was performed to unravel the genetic underpinnings of disease resistance. A total of 932 marker-trait associations were identified and assigned to 49 quantitative trait loci. The accumulation of novel and rare resistance alleles significantly bolstered the overall resistance level in PGRs. Three PGR donors with high counts of novel/rare alleles and exhibited exceptional resistance to leaf rust and powdery mildew were identified, offering promise for targeted pre-breeding goals and enhanced resilience in forthcoming varieties. Our findings underscore the critical contribution of PGRs to strengthening crop resilience and advancing sustainable agricultural practices.