Changes in the accuracy of the genomic estimates obtained by the ssGBLUP and wssGBLUP methods were evaluated using different reference groups. The weighting procedure’s reasonableness of application Pwas considered to improve the accuracy of genomic predictions for meat, fattening and reproduction traits in pigs. Six reference groups were formed to assess the genomic data quantity impact on the accuracy of predicted values (groups of genotyped animals). The datasets included 62,927 records of meat and fattening productivity (fat thickness over 6–7 ribs (BF1, mm)), muscle depth (MD, mm) and precocity up to 100 kg (age, days) and 16,070 observations of reproductive qualities (the number of all born piglets (TNB) and the number of live-born piglets (NBA), according to the results of the first farrowing). The wssGBLUP method has an advantage over ssGBLUP in terms of estimation reliability. When using a small reference group, the difference in the accuracy of ssGBLUP over BLUP AM is from −1.9 to +7.3 percent points, while for wssGBLUP, the change in accuracy varies from +18.2 to +87.3 percent points. Furthermore, the superiority of the wssGBLUP is also maintained for the largest group of genotyped animals: from +4.7 to +15.9 percent points for ssGBLUP and from +21.1 to +90.5 percent points for wssGBLUP. However, for all analyzed traits, the number of markers explaining 5% of genetic variability varied from 71 to 108, and the number of such SNPs varied depending on the size of the reference group (79–88 for BF1, 72–81 for MD, 71–108 for age). The results of the genetic variation distribution have the greatest similarity between groups of about 1000 and about 1500 individuals. Thus, the size of the reference group of more than 1000 individuals gives more stable results for the estimation based on the wssGBLUP method, while using the reference group of 500 individuals can lead to distorted results of GEBV.