Genomic prediction and selection models (GS) were deployed as part of DataBio project infrastructure and solutions. The work addressed end-user requirements, i.e., the need for cost-effectiveness of the implemented technologies, simplified breeding schemes, and shortening the time to cultivar development by selecting for genetic merit. Our solutions applied genomic modelling in order to sustainably improve productivity and profits. GS models were implemented in sorghum crop for several breeding scenarios. We fitted the best linear unbiased predictions data using Bayesian ridge regression, genomic best linear unbiased predictions, Bayesian least absolute shrinkage and selection operator, and BayesB algorithms. The performance of the models was evaluated using Monte Carlo cross-validation with 70% and 30%, respectively, as training and validation sets. Our results show that genomic models perform comparably with traditional methods under single environments. Under multiple environments, predicting non-field evaluated lines benefits from borrowing information from lines that were evaluated in other environments. Accounting for environmental noise and other factors, also this model gave comparable accuracy with traditional methods, but higher compared to the single environment model. The GS accuracy was comparable in genomic selection index, aboveground dry biomass yield and plant height, while it was lower for the dry mass fraction of the fresh weight. The genomic selection model performances obtained in our pilots are high enough to sustain sorghum breeding for several traits including antioxidants production and allow important genetic gains per unit of time and cost.