Basic helix–loop–helix (bHLH) proteins comprise a large family of transcription factors that are involved in plant growth and development, as well as responses to various types of environmental stress. Betula platyphylla (birch) is a pioneer tree species in secondary forest that plays a key role in maintaining ecosystem stability and forest regeneration, but few bHLHs involved in abiotic stress responses have been unveiled in birch. In this study, nine BpbHLH TFs related to stress responses in the birch genome were identified. Quantitative real‐time polymerase chain reaction (RT‐PCR) analysis indicated that the expression of these TFs can be induced by salt stress, and the expression of BpbHLH1 was higher than that of other BpbHLH genes. Particle bombardment analysis revealed that BpbHLH1 was localized to the nucleus. Yeast transformation found that BpbHLH1 has transcriptional activation activity. We generated BpbHLH1‐overexpressing and silencing transgenic birch plants and subjected them to salt stress analysis. BpbHLH1 can enhance the salt tolerance of birch plants by increasing the reactive oxygen species scavenging ability and inhibiting cell death. Yeast one‐hybrid, ß‐glucuronidase, and chromatin immunoprecipitation assays revealed that BpbHLH1 can regulate the expression of target genes involved in stress resistance by binding to the E‐box‐1, E‐box‐2 and G‐box elements in their promoters. The results of this study enhanced our understanding of the salt tolerance conferred by BpbHLH TFs in B. platyphylla and identified useful genes for the breeding of novel birch germplasm.