DNA replication is key to ensuring the complete duplication of genomic DNA prior to mitosis and is tightly regulated by both cell cycle machinery and checkpoint signals. Regulation of the S phase program occurs at several stages, affecting origin firing, replication fork elongation, fork velocity, and fork stability, all of which are dependent on S-phase-promoting kinase activity. Somatic mammalian cells use well-established origin programs by which specific regions of the genome are replicated at precise times. However, the mechanisms by which S phase kinases regulate origin firing in mammals are largely unknown. Here, we discuss recent advances in the understanding of how S phase programs are regulated in mammals at the correct regions and at the appropriate times.