The cultivated soybean (Glycine max (L.) Merrill) is domesticated from wild soybean (Glycine soja) and has heavier seeds with a higher oil content than the wild soybean. In this study, we identified a novel candidate gene associated with SW using a genome-wide association study (GWAS). The candidate gene GmWRI14-like was detected by GWAS analysis in three consecutive years. By constructing transgenic soybeans overexpressing the GmWRI14-like gene and gmwri14-like soybean mutants, we found that overexpression of GmWRI14-like increased the SW and increased total fatty acid content. We then used RNA-seq and qRT-PCR to identify the target genes directly or indirectly regulated by GmWRI14-like. Transgenic soyabeans overexpressing GmWRI14-like showed increased accumulation of GmCYP78A50 and GmCYP78A69 than non-transgenic soybean lines. Interestingly, we also found that GmWRI14-like proteins could interact with GmCYP78A69/GmCYP78A50 using yeast two-hybrid and bimolecular fluorescence complementation. Our results not only shed light on the genetic architecture of cultivated soybean SW, but also lays a theoretical foundation for improving the SW and oil content of soybeans.