2015
DOI: 10.1504/ijdmb.2015.072755
|View full text |Cite
|
Sign up to set email alerts
|

Genome-wide discovery of miRNAs using ensembles of machine learning algorithms and logistic regression

Abstract: Abstract:In silico prediction of novel miRNAs from genomic sequences remains a challenging problem. This study presents a genome-wide miRNA discovery software package called GenoScan and evaluates two hairpin classification methods. These methods, one ensemble-based and one using logistic regression were benchmarked along with 15 published methods. In addition, the sequence-folding step is addressed by investigating the impact of secondary structure prediction methods and the choice of input sequence length on… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 43 publications
0
0
0
1
Order By: Relevance
“…一些整合性的方法则结合了热力学参数和多序列比对 来估计碱基配对的概率, 如RNAalifold [176] 和TurboFold II [177] . (ⅲ) 传统机器学习方法(classical machine learning): MXfold [178] , Pfold [179] , CONTRAfold [180] 和Context-Fold [181] 等使用传统机器学习算法从已知的RNA结构 数据集中学习并调整模型参数. (ⅳ) 深度学习方法 (deep learning): 利用深度神经网络来捕捉RNA的局部 和全局结构特征进行结构建模.…”
Section: Rna分子最稳定的二级结构 (ⅱ) 基于共变异的方法unclassified
“…一些整合性的方法则结合了热力学参数和多序列比对 来估计碱基配对的概率, 如RNAalifold [176] 和TurboFold II [177] . (ⅲ) 传统机器学习方法(classical machine learning): MXfold [178] , Pfold [179] , CONTRAfold [180] 和Context-Fold [181] 等使用传统机器学习算法从已知的RNA结构 数据集中学习并调整模型参数. (ⅳ) 深度学习方法 (deep learning): 利用深度神经网络来捕捉RNA的局部 和全局结构特征进行结构建模.…”
Section: Rna分子最稳定的二级结构 (ⅱ) 基于共变异的方法unclassified