The amino acid permease (AAP) is an important transmembrane protein that is involved in the absorption and transport of amino acids in plants. We investigated the expression patterns of AtAAP genes in Arabidopsis thaliana, based on quantitative real-time PCR. The results revealed differential expression patterns of eight AtAAP genes in different tissues, with five genes (AtAAP1, AtAAP2, AtAAP6, AtAAP7, and AtAAP8) expressed at relatively high levels in both flowers and siliques, suggesting their shared functions in the accumulation of amino acids. In transgenic plants, with endosperm-specific overexpression of AtAAP1, both AtAAP1 and AtAAP6 were up-regulated in both the roots and siliques, while AtAAP2, AtAAP3, AtAAP4, and AtAAP5 showed similar expression levels in the stems and siliques, whereas AtAAP7 and AtAAP8 were expressed at their highest levels in the stems and roots. The results of the amino acid affinity experiments revealed varied absorption capacities for different amino acids, by AtAAP1, and increased acid amino contents in the reproductive organs. These results were verified in transgenic maize plants, with the overexpression of AtAAP1, revealing higher amino acid contents in the reproductive organs than those of the vegetative organs. Our study clearly demonstrated that the endosperm-specific promoter increased the amino acid contents in the reproductive organs and improved the effective utilization of organic nitrogen in plants.