Background
Spontaneous coronary artery dissection (SCAD) is a multifactorial process that involves predisposing factors and precipitating stressors. Genetic abnormality has been implicated to play a mechanistic role in the development of SCAD. This systematic review aims to summarize the current evidence concerning the link between SCAD and genetic abnormalities.
Methods
We reviewed original studies published until May 2023 that reported SCAD patients with a genetic mutation by searching PubMed, Embase Ovid, and Google Scholar. Registries, cohort studies, and case reports were included if a definitive SCAD diagnosis was reported, and the genetic analysis was performed. Exclusion criteria included editorials, reviews, letters or commentaries, animal studies, meeting papers, and studies from which we were unable to extract data. Data were extracted from published reports.
Results
A total of 595 studies were screened and 55 studies were identified. Among 116 SCAD patients with genetic abnormalities, 20% had mutations in the COL gene, 13.70% TLN1 gene, and 8.42% TSR1 gene. Mutations affecting the genes encoding COL and TLN1 were most frequently reported (20 and 13.7%, respectively). Interestingly, 15 genes of this collection were also reported in patients with thoracic aortic diseases as well. The genetic commonality between fibromuscular dysplasia (FMD) and SCAD was also included.
Conclusion
In this review, the inherited conditions and reported genes of undetermined significance from case reports associated with SCAD are collected. A brief description of the encoded protein and the clinical features associated with pathologic genes is provided. Current data suggested that the diagnostic yield of genetic studies for patients with SCAD would be low and routine genetic screening of such patients with no clinical features indicative of associated disorders remains debatable. This review can be used as a guide for clinicians to recognize inherited syndromic and nonsyndromic disorders associated with SCAD.