The basic helix–loop–helix (bHLH) superfamily is the second-largest transcription factor family that participates in a wide range of biological processes in plants, including iron homeostasis. Although the family has been studied in several plant species, a comprehensive investigation is still needed for peanut (Arachis hypogaea). Here, a genome-wide analysis identified 373 AhbHLH genes in peanut, which were divided into 14 groups or subfamilies according to phylogenetic analysis. Clustered members generally share similar gene/protein structures, supporting the evolutionary relationships among AhbHLH proteins. Most AhbHLHs experienced whole-genome or segmental duplication. The majority of AhbHLH proteins had a typical bHLH domain, while several phylogenetic groups, including Group VI, X, XIII, and XIV, had the HLH domain. The expression of several AhbHLH genes, including AhbHLH001.3, AhbHLH029.1/.2, AhbHLH047.1/.2, AhbHLH115.1/.2, AhbHLH097.1/.2, AhbHLH109.4, and AhbHLH135.1, was induced by Fe deficiency for both cultivars, or at least in Silihong, suggesting an important role in the Fe deficiency response in peanut. Nine genes (AhbHLH001.3, AhbHLH029.1/.2, AhbHLH047.1/.2, AhbHLH097.1/.2, and AhbHLH115.1/.2) were specifically induced by Fe deficiency in Silihong, and their expression was higher in Silihong than that in Fenghua 1. These genes might be responsible for higher tolerance to Fe deficiency in Silihong. Our findings provide comprehensive information for further elucidating the regulatory mechanism of Fe homeostasis in peanut.