“…Due to falling sequencing costs and the increased acknowledgment of significant gene presence/absence variation in some species, pangenomes have expanded beyond bacteria to higher organisms such as chicken [44] and human [45] as well as many plant species, allowing the analysis of the large-scale PAV observed in plants [46,47]. Pangenomics in plants was first proposed by Morgante et al in 2007 [48] and since then, pangenomes have been assembled for many crop plant species including soybean (Glycine max) [49,50], maize (Zea mays) [51], tomato (Solanum lycopersicum) [35], Brassica oleracea [39], Brassica napus [27,52], Brachypodium distachyon [53], barley (Hordeum vulgare) [54], rice [55], pigeon pea (Cajanus cajan) [29,56], apple (Malus domestica) [57], capsicum [25], sesame (Sesamum indicum) [58], sunflower (Helianthus annuus) [59], yuca (Manihot esculenta) [60], sorghum (Sorghum bicolor) [36,61], and bread wheat (Triticum aestivum) [62]. Pangenomes for non-food plant species such as Arabidopsis thaliana [63], Amborella trichopoda [64], cotton (Gossypium) [65], and barrel clover (Medicago truncatula) [66] have also been published (Table 1).…”