Hepatocellular carcinoma (HCC) tumors invariably develop resistance to cytotoxic and targeted agents, resulting in failed treatment and tumor recurrence. Previous in vivo short hairpin RNA (shRNA) screening evidence revealed mitochondrial-processing peptidase (PMPC) as a leading gene contributing to tumor cell resistance against sorafenib, a multikinase inhibitor used to treat advanced HCC. Here, we investigated the contributory role of the b subunit of PMPC (PMPCB) in sorafenib resistance. Silencing PMPCB increased HCC tumor cell susceptibility to sorafenib therapy, decreased liver tumor burden, and improved survival of tumor-bearing mice receiving sorafenib. Moreover, sorafenib + PMPCB shRNA combination therapy led to attenuated liver tumor burden and improved survival outcome for tumor-bearing mice, and it reduced colony formation in murine and human HCC cell lines in vitro. Additionally, PMPCB silencing enhanced PINK1-Parkin signaling and downregulated the anti-apoptotic protein MCL-1 in sorafenib-treated HCC cells, which is indicative of a healthier proapoptotic phenotype. Higher pre-treatment MCL-1 expression was associated with inferior survival outcomes in sorafenibtreated HCC patients. Elevated MCL-1 expression was present in sorafenib-resistant murine HCC cells, while MCL-1 knockdown sensitized these cells to sorafenib. In conclusion, our findings advocate combination regimens employing sorafenib with PMPCB knockdown or MCL-1 knockdown to circumvent sorafenib resistance in HCC patients.