Birth weight of pigs is an important economic factor in the livestock industry. The identification of the genes and variants that underlie birth weight is of great importance. In this study, we integrated two genotyping methods, single nucleotide polymorphism (SNP) chip analysis and restriction site associated DNA sequencing (RAD-seq) to genotype genome-wide SNPs. In total, 45,175 and 139,634 SNPs were detected with the SNP chip and RAD-seq, respectively. The genome-wide association study (GWAS) of the combined SNP panels identified two significant loci located at chr1: 97,745,041 and chr4: 112,031,589, that explained 6.36% and 4.25% of the phenotypic variance respectively. To reduce interval containing causal variants, we imputed sequencelevel SNPs in the GWAS identified regions and fine-mapped the causative variants into two narrower genomic intervals: a ∼100 kb interval containing 71 SNPs and a broader ∼870 kb interval with 432 SNPs. This fine-mapping highlighted four promising candidate genes, SKOR2, SMAD2, VAV3, and NTNG1. Additionally, the functional genes, SLC25A24, PRMT6 and STXBP3, are also located near the fine-mapping region. These results suggest that these candidate genes may have contribute substantially to the birth weight of pigs.