This study investigated a metabolic network (MN) from Mycobacterium vanbaalenii PYR-1 for polycyclic aromatic hydrocarbons (PAHs) from the perspective of structure, behavior, and evolution, in which multilayer omics data are integrated. Initially, we utilized a high-throughput proteomic analysis to assess the protein expression response of M. vanbaalenii PYR-1 to seven different aromatic compounds. A total of 3,431 proteins (57.38% of the genome-predicted proteins) were identified, which included 160 proteins that seemed to be involved in the degradation of aromatic hydrocarbons. Based on the proteomic data and the previous metabolic, biochemical, physiological, and genomic information, we reconstructed an experiment-based system-level PAH-MN. The structure of PAH-MN, with 183 metabolic compounds and 224 chemical reactions, has a typical scale-free nature. The behavior and evolution of the PAH-MN reveals a hierarchical modularity with funnel effects in structure/function and intimate association with evolutionary modules of the functional modules, which are the ring cleavage process (RCP), side chain process (SCP), and central aromatic process (CAP). The 189 commonly upregulated proteins in all aromatic hydrocarbon treatments provide insights into the global adaptation to facilitate the PAH metabolism. Taken together, the findings of our study provide the hierarchical viewpoint from genes/proteins/metabolites to the network via functional modules of the PAH-MN equipped with the engineering-driven approaches of modularization and rationalization, which may expand our understanding of the metabolic potential of M. vanbaalenii PYR-1 for bioremediation applications.With the 2010 Deepwater Horizon BP oil spill in the Gulf of Mexico (http://www.epa.gov/BPSpill), concerns have been raised regarding the effect of polycyclic aromatic hydrocarbons (PAHs) on the environment. PAHs are a diverse class of organic compounds with two or more fused benzene rings (4). These compounds are highly hydrophobic and not easily bioavailable to microorganisms for degradation, and they pose a significant toxicological risk to human and environmental health (4). Microbial activities represent one of the primary processes by which PAHs are eliminated from the environment (4).Mycobacterium vanbaalenii PYR-1, originally isolated from oilcontaminated estuarine sediment, was the first bacterium reported to degrade high-molecular-weight (HMW) PAHs with four or more fused benzene rings (10, 18). Since it has the ability to mineralize or degrade various kinds of PAHs, such as phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]pyrene, benz [a]anthracene, and 7,12-dimethylbenz[a]anthracene (10, 11, 15-17, 24, 34-38), strain PYR-1 has been studied extensively as a prototype organism to elucidate pathways (19) and has been used to remediate PAH-contaminated soils (31). Recently, with the completion of the genome sequence of M. vanbaalenii PYR-1, efforts to elucidate the molecular background for the metabolism of PAHs have been initiated (21,22,26...