Background: Hybrid F1genotypes with higher yields or improvement in other traits of economic value due to heterosis as compared to inbred local check varieties (ILCV), are identified and released as hybrid commercial varieties. We analyzed the yield data of 2070 hybrid F1 genotypes with ILCV evaluated over 32 years (1988 to 2019) in 2376 multi-environment experiments executed at 102 locations in the irrigated ecosystem across India. Results: The genetic gain or loss in yield of hybrid F1 genotypes estimated over the test duration was non-significant. Hybrid F1 genotypes produced 10% more grains (728-2588 kg/ha) than ILCV in many experiments at several locations. Our analyses have established that grain yields of 7.0 to 7.9 t/ha, were harvested in hybrid F1 genotypes with early, mid-early and medium maturity duration, and in those with medium slender grains at many locations in 362 experiments. A higher level of rice productivity per day (62 to 63 kg/ha) was recorded with the early maturing and mid-early maturing hybrid F1 genotypes in these tests. The N requirement to produce 8 t/ha of hybrid rice grains was 15 kg N/t as compared with a minimum of 20 kg N/t used in China. Both the hybrids and inbreds in these experiments produced grain yields that were easily attained previously with high yielding (≥10 t/ha) commercial inbreds since 1968. Unless the attainable yields are reached in inbred checks with the proven appropriate crop production practices in an experiment, it is futile to estimate a genetic gain or loss for grain yields in new genotypes developed.Conclusions: Hybrid genotypes bred in India produced yields of 7 to 8 t/ha which matched with reports from China on hybrids and green super rice; these India-bred hybrids showed higher productivity per day and shorter maturity periods than super hybrids of China. Opportunities still exist to breed indica/japonica hybrids to obtain more heterotic early and mid-early maturing hybrids, and develop efficient agronomical practices to realize the potential advantages from hybrids. There is scope for breeders to limit test locations to represent specific target areas to avoid data loss. Focusing on removing obstacles in hybrid seed production is essential to exploit yield heterosis in hybrids, and to make hybrid rice technology profitable to farmers.