MicroRNAs (miRNAs) can have tissue-specific expression and functions; they can originate from dedicated miRNA genes, from non-canonical miRNA genes, or from mirror-miRNA genes and can also experience post-transcriptional variations. It remains unclear, however, which mechanisms of miRNA production or modification are tissuespecific and the extent of their evolutionary conservation. To address these issues, we developed the software Prost! (PRocessing Of Short Transcripts), which, among other features, allows accurate quantification of mature miRNAs, takes into account posttranscriptional processing, such as nucleotide editing, and helps identify mirror-miRNAs.Here, we applied Prost! to annotate and analyze miRNAs in three-spined stickleback (Gasterosteus aculeatus), a model fish for evolutionary biology reported to have a miRNome larger than most teleost fish. Zebrafish (Danio rerio), a distantly related teleost with a well-known miRNome, served as comparator. Despite reports suggesting that stickleback had a large miRNome, results showed that stickleback has 277 evolutionary-conserved mir genes and 366 unique mature miRNAs (excluding mir430 gene replicates and the vaultRNA-derived mir733), similar to zebrafish. In addition, small RNA sequencing data from brain, heart, testis, and ovary in both stickleback and zebrafish identified suites of mature miRNAs that display organ-specific enrichment, which is, for many miRNAs, evolutionarily-conserved. These data also supported the hypothesis that evolutionarily-conserved, organ-specific mechanisms regulate miRNA post-transcriptional variations. In both stickleback and zebrafish, miR2188-5p was 3 edited frequently with similar nucleotide editing patterns in the seed sequence in various tissues, and the editing rate was organ-specific with higher editing in the brain. In summary, Prost! is a critical new tool to identify and understand small RNAs and can help clarify a species' miRNA biology, as shown here for an important fish model for the evolution of developmental mechanisms, and can provide insight into organ-specific expression and evolutionary-conserved miRNA post-transcriptional mechanisms. females) of a fresh water laboratory strain derived from Boot Lake, Alaska were obtained from Mark Currey in the W. Cresko Laboratory (University of Oregon). Animals were handled in accordance with good animal practice as approved by the University of Oregon Institutional Animal Care and Use Committee (Animal Welfare Assurance Number A-3009-01, IACUC protocol 12-02RA).
RNA extraction and small RNA Library preparationImmediately following euthanasia by overdose of MS-222, fin clips, brains, heart ventricles, and testes were sampled from two male zebrafish and two male stickleback, and fin clips and ovaries from two female zebrafish and two female stickleback. DNA was extracted from fin clips using a generic proteinase K DNA extraction method, and both small and large RNAs from each individual organ were extracted using NorgenBiotek microRNA purification kit according to the man...