Bees play important roles in socio-economic development, biodiversity conservation, and ecosystem stability. However, during the cold season, resources become limited, leading to significant losses in bee colonies. Although many studies have described the characteristics of winter bees and demonstrated that notable changes occur in their gut microflora, the underlying mechanisms remain yet to be fully elucidated. Therefore, this study was conducted to compare the gut microbiota dynamics of overwintering bees. Sample acquisition involved randomly selecting ten colonies each from three bee farms containing Apis cerana (AC) and Apis mellifera (AM), followed by dissection for further analysis. DNA was extracted, and 16S rDNA sequencing, along with various bioinformatics tools, was used to assess microbial diversity, functional differences, and species comparisons between AC and AM gut microbiota. AC exhibited lower β diversity in the gut microbiota than AM during winter. Moreover, Gilliamella and Apibacter were relatively more abundant in AC. Regarding microbial functions, key pathways included the phosphotransferase system, galactose metabolism, the pentose phosphate pathway, and carbohydrate transport and metabolism. These results suggest the presence of microbial diversity differences between AC and AM, with the differential microbial functions mainly enriched in metabolic pathways that facilitate adaptation to cold environmental stress.