Background: Small cell lung cancer (SCLC) is the most aggressive lung cancer subtype, with more than 70% of patients having metastatic disease and a poor prognosis. However, no integrated multi-omics analysis has been performed to explore novel differentially expressed genes (DEGs) or significantly mutated genes (SMGs) associated with lymph node metastasis (LNM) in SCLC.Methods: In this study, whole-exome sequencing (WES) and RNA-sequencing were performed on tumor specimens to investigate the association between genomic and transcriptome alterations and LNM in SCLC patients with (N+, n=15) or without (N0, n=11) LNM.
Results:The results of WES revealed that the most common mutations occurred in TTN (85%) and TP53 (81%). The SMGs, including ZNF521, CDH10, ZNF429, POLE, and FAM135B, were associated with LNM. Cosmic signature analysis showed that mutation signatures 2, 4, and 7 were associated with LNM.Meanwhile, DEGs, including MAGEA4, FOXI3, RXFP2, and TRHDE, were found to be associated with LNM. Furthermore, we found that the messenger RNA (mRNA) levels of RB1 (P=0.0087), AFF3 (P=0.058), TDG (P=0.05), and ANKRD28 (P=0.042) were significantly correlated with copy number variants (CNVs), and ANKRD28 expression was consistently lower in N+ tumors than in N0 tumors. Further validation in cBioPortal revealed a significant correlation between LNM and poor prognosis in SCLC (P=0.014), although there was no significant correlation between LNM and overall survival (OS) in our cohort (P=0.75).Conclusions: To our knowledge, this is the first integrative genomics profiling of LNM in SCLC. Our findings are particularly important for early detection and the provision of reliable therapeutic targets.