Background
In patients with non-small cell lung cancer (NSCLC), 10%-40% will eventually develop brain metastases. We present the clinicopathologic, genomic, and biomarker landscape of a large cohort of NSCLC brain metastases (NSCLC-BM) samples.
Materials and Methods
We retrospectively analyzed 3035 NSCLC-BM tested with comprehensive genomic profiling (CGP) during routine clinical care. In addition, we compared the NSCLC-BM to a separate cohort of 7277 primary NSCLC (pNSCLC) specimens. Finally, we present data on 67 paired patients with NSCLC-BM and pNSCLC.
Results
Comprehensive genomic profiling analysis of the 3035 NSCLC-BMs found that the most frequent genomic alterations (GAs) were in the TP53, KRAS, CDKN2A, STK11, CDKN2B, EGFR, NKX2-1, RB1, MYC, and KEAP1 genes. In the NSCLC-BM cohort, there were significantly higher rates of several targetable GAs compared with pNSCLC, including ALK fusions, KRAS G12C mutations, and MET amplifications; and decreased frequency of MET exon14 skipping mutations (all P < .05). In the subset of NSCLC-BM (n = 1063) where concurrent PD-L1 immunohistochemistry (IHC) was performed, 54.7% of the patients with NSCLC-BM were eligible for pembrolizumab based on PD-L1 IHC (TPS ≥ 1), and 56.9% were eligible for pembrolizumab based on TMB-High status. In addition, in a series 67 paired pNSCLC and NSCLC-BM samples, 85.1% (57/67) had at least one additional GA discovered in the NSCLC-BM sample when compared with the pNSCLC sample.
Conclusions
Herein, we defined the clinicopathologic, genomic, and biomarker landscape of a large cohort of patients with NSCLC-BM which can help inform study design of future clinical studies for patients with NSCLC with BM. In certain clinical situations, metastatic NSCLC brain tissue or cerebral spinal fluid specimens may be needed to fully optimize personalized treatment.