The availability of cost-efficient genotyping technologies has facilitated the implementation of genomic selection into numerous breeding programs. However, some studies reported a superiority of pedigree over genomic selection in line breeding, and as, aside from systematic record keeping, no additional costs are incurring in pedigree-based prediction, the question about the actual benefit of fingerprinting several hundred lines each year might suggest itself. This study aimed thus on shedding some light on this question by comparing pedigree, genomic, and single-step prediction models using phenotypic and genotypic data that has been collected during a time period of ten years in an applied wheat breeding program. The mentioned models were for this purpose empirically tested in a multi-year forward prediction as well as a supporting simulation study. Given the availability of deep pedigree records, pedigree prediction performed similar to genomic prediction for some of the investigated traits if preexisting information of the selection candidates was available. Notwithstanding, blending both information sources increased the prediction accuracy and thus the selection gain substantially, especially for low heritable traits. Nevertheless, the largest advantage of genomic predictions can be seen for breeding scenarios where such preexisting information is not systemically available or difficult and costly to obtain.