Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The age at first calving (AFC) is an important trait to be considered in breeding programmes of dairy buffaloes, where new approaches and technologies, such as genomic selection, are constantly applied. Thus, the objective of this study was to compare the predictive ability of different genomic single-step methods using AFC information from Murrah buffaloes. From a pedigree file containing 3320 buffaloes, 2247 cows had AFC records and 553 animals were genotyped. The following models were performed: pedigree-based BLUP (PBLUP), single-step GBLUP (ssGBLUP), weighted single-step GBLUP (WssGBLUP), and single-step Bayesian regression methods (ssBR-BayesA, BayesBπ, BayesCπ, Bayes-Lasso, and BayesRR). To compare the methodologies, the accuracy and dispersion of (G)EBVs were assessed using the LR method. Accuracy estimates for the genotyped animals ranged from 0.30 (PBLUP) to 0.39 (WssGBLUP). Predictions with the traditional model (PBLUP) were very dispersed from what was expected, while BayesCπ (0.99) and WssGBLUP (1.00) obtained the lowest dispersion. The results indicate that the use of genomic information can improve the genetic gain for AFC by increasing the accuracy and reducing inflation/deflation of predictions compared to the traditional pedigree-based model. In addition, among all genomic single-step models studied, WssGBLUP and single-step BayesA were the most advantageous methods to be used in the genomic evaluation of AFC of buffaloes from this population.
The age at first calving (AFC) is an important trait to be considered in breeding programmes of dairy buffaloes, where new approaches and technologies, such as genomic selection, are constantly applied. Thus, the objective of this study was to compare the predictive ability of different genomic single-step methods using AFC information from Murrah buffaloes. From a pedigree file containing 3320 buffaloes, 2247 cows had AFC records and 553 animals were genotyped. The following models were performed: pedigree-based BLUP (PBLUP), single-step GBLUP (ssGBLUP), weighted single-step GBLUP (WssGBLUP), and single-step Bayesian regression methods (ssBR-BayesA, BayesBπ, BayesCπ, Bayes-Lasso, and BayesRR). To compare the methodologies, the accuracy and dispersion of (G)EBVs were assessed using the LR method. Accuracy estimates for the genotyped animals ranged from 0.30 (PBLUP) to 0.39 (WssGBLUP). Predictions with the traditional model (PBLUP) were very dispersed from what was expected, while BayesCπ (0.99) and WssGBLUP (1.00) obtained the lowest dispersion. The results indicate that the use of genomic information can improve the genetic gain for AFC by increasing the accuracy and reducing inflation/deflation of predictions compared to the traditional pedigree-based model. In addition, among all genomic single-step models studied, WssGBLUP and single-step BayesA were the most advantageous methods to be used in the genomic evaluation of AFC of buffaloes from this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.