DN" damage risk assessment in comet assay by the use of buccal mucosa cells has great advantages in comparison with other cell type sample due to more safely, easier, cheaper, and non-invasive method for in vivo studies. "ccording to the OECD Guidelines, the in vivo mammalian alkaline comet assay is well-established and validated method for measuring DN" strand breaks in single eukaryotic cells. Considering exposure to xenobiotics and endogenous damage inductors, buccal mucosa cells are the first to be in direct contact after exposure and this makes them an ideal biomatrices in evaluation of the level of individual genotoxicity to several compounds already mentioned. Their clinical diagnostic applicability confers a potential use in patients across time. However, the number of publications referring to the human buccal comet assay is low in the last two decades. This low growing interest may be explained by several factors, including its relative technical problems. Different procedures have been used in collecting and processing the samples. In order to have widespread acceptance and credibility in human population studies, the comet assay in buccal cells requires standardization of the protocol, of parameters analyzed, and a better knowledge of critical features affecting the assay outcomes, including the definition of the values of spontaneous DN" damage. There is a need for further collaborative work as in the HUMN micronucleus assay on lymphocytes and HUMNxL micronucleus assay on buccal cells collaborative projects. The creation of a network of laboratories will allow more focused validation studies, including the design of a classic, historic, prospective cohort study in order to explore the link between measures of genetic instability in the buccal mucosa and the risk of cancer and other chronic-degenerative diseases. One such network connection will start in as a COST project under the name hCOMET The comet assay as a human biomonitoring tool launched by Prof. "ndrew Collins.