a b s t r a c tThe scientific study of living organisms is permeated by machine and design metaphors. Genes are thought of as the ''blueprint'' of an organism, organisms are ''reverse engineered'' to discover their functionality, and living cells are compared to biochemical factories, complete with assembly lines, transport systems, messenger circuits, etc. Although the notion of design is indispensable to think about adaptations, and engineering analogies have considerable heuristic value (e.g., optimality assumptions), we argue they are limited in several important respects. In particular, the analogy with human-made machines falters when we move down to the level of molecular biology and genetics. Living organisms are far more messy and less transparent than human-made machines. Notoriously, evolution is an opportunistic tinkerer, blindly stumbling on ''designs'' that no sensible engineer would come up with. Despite impressive technological innovation, the prospect of artificially designing new life forms from scratch has proven more difficult than the superficial analogy with ''programming'' the right ''software'' would suggest. The idea of applying straightforward engineering approaches to living systems and their genomesisolating functional components, designing new parts from scratch, recombining and assembling them into novel life forms-pushes the analogy with human artifacts beyond its limits. In the absence of a one-to-one correspondence between genotype and phenotype, there is no straightforward way to implement novel biological functions and design new life forms. Both the developmental complexity of gene expression and the multifarious interactions of genes and environments are serious obstacles for ''engineering'' a particular phenotype. The problem of reverse-engineering a desired phenotype to its genetic ''instructions'' is probably intractable for any but the most simple phenotypes. Recent developments in the field of bio-engineering and synthetic biology reflect these limitations. Instead of genetically engineering a desired trait from scratch, as the machine/engineering metaphor promises, researchers are making greater strides by co-opting natural selection to ''search'' for a suitable genotype, or by borrowing and recombining genetic material from extant life forms.Ó 2013 Elsevier Ltd. All rights reserved.
When citing this paper, please use the full journal title Studies in History and Philosophy of Biological and Biomedical SciencesWe improve our favourite plants and animals-and how few they are-gradually by selective breeding; now a new and better peach, now a seedless grape, now a sweeter and larger flower, now a more convenient breed of cattle. We improve them gradually, because our ideals are vague and tentative, and our knowledge is very limited; because Nature, too, is shy and slow in our clumsy hands. Some day all this will be better organized, and still better. That is the drift of the current in spite of the eddies. The whole world will be intelligent, educated, and co-operating; th...