In Ethiopia, wheat variety development has traditionally prioritized yield and disease resistance over bread‐making quality. To address this gap, our study evaluated 22 Ethiopian bread wheat varieties across six locations during the 2015/2016 season, utilizing a randomized complete block design with three replications. Various quality traits, including 1000‐kernel weight (TKW), hectoliter weight (HLW), Perten hardness index (HI), single kernel weight (SKW), single kernel diameter (SKD), grain protein content (PC), wet gluten (WG), Zeleny value (ZV), and starch content (SC), were analyzed. Significant effects of varieties, locations, and their interactions on these traits were observed (p < 0.01). Madawalabu, Danda'a, and Mekelle‐4 displayed superior TKW (>40 g), while Menze and Bolo exhibited higher HLW. HI values ranged from 82.8% in Sofumar to 35.5% in Mekelle‐3, indicating diverse grain hardness. Favorable milling traits were observed with SKW values exceeding 30 mg and SKD surpassing 2.5 mm. Genotype and location influenced PC (9.5%–11.0%) and WG content (21.6%–25.2%), meeting bread‐making requirements. ZV ranged from 21.9% to 31%, and SC varied from 64% to 68%, reflecting changes in starch concentration between varieties. Varietal performance varied, with Madawalabu, Menze, and Bolo showing promise. Correlation analysis revealed positive associations among HLW, SKD, SKW, TKW, PC, WG, and ZV, and a negative correlation with SC. These insights provide a foundation for targeted breeding strategies to enhance specific attributes crucial for optimal bread quality, contributing valuable information to wheat breeding programs.