The high genetic diversity of the tomato and its high micronutrient content make this fruit very interesting from an economic and nutritional point of view. The genetic erosion suffered by this crop, due to breeding objectives based on yield and marketing, makes it necessary to return to the origins in search of the nutritional and organoleptic quality lost in traditional varieties. In this study, the agronomic, physical, organoleptic, and nutritional characteristics of eighteen F1 hybrids, obtained by crossing fourteen traditional varieties, previously selected for their quality, were studied in order to select genotypes of superior quality that could be candidates for new varieties. All the parameters studied were strongly influenced by genotype, with a wide range between varieties. Most of the experimental hybrids showed higher quality scores than the commercial hybrids used as controls, due to the extensive selection process carried out on the parents in previous work. Principal component analysis revealed the characteristics of each hybrid that distinguished it from the others. Some hybrids (H1, H2, and H4) stood out for their high concentration of active compounds, others (H14, H13, H8, H15, H7, and H9) for their agronomic performance and high β-carotene content, and H3 was the only one to contain chlorophyll in its ripe fruits. Finally, the evaluation index allowed the selection of five hybrids with interesting characteristics, combining good yield performance and high quality. The results of this work have allowed for the selection of a group of hybrids with high organoleptic and nutritional quality which will be used as parents in a breeding programme, in which their characteristics will be fixed and their resilience will be increased through the introduction of virus resistance.