Bioluminescent proteins are used in a plethora of analytical methods, from ultrasensitive assay development to the in vivo imaging of cellular processes. This article reviews the most pertinent current bioluminescent-protein-based technologies and suggests the future direction of this vein of research. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.)Since the dawn of civilization, humans have shown enormous interest in exploring the world surrounding us. Our curious nature, fueled by a desire to both understand and control natural phenomena, has spurred the development of techniques and tools that constitute the foundation of today's analytical chemistry. In the past 100 years, analytical science has progressed from crude techniques such as filtration and distillation to highly sophisticated techniques such as atomic force spectroscopy, surface plasmon resonance, and chemometrics-based signal deconvolution algorithms. With these developments, our ability to observe and analyze has progressed from the macroscopic world visible to the naked eye to the microscopic domain, which must be magnified with optical lenses, and now to the nanometer scale and beyondsa feat that has piqued the interest of engineers, physicists, biologists, and chemists alike. Observing and quantifying events at these miniscule dimensions present new challenges and require a diverse array of specialized tools. In that regard, light-emitting proteins are invaluable for detection and imaging, as well as for revealing the properties of these nanoscale environments.Light has inspired many cultural superstitions: early Polynesians, Scandinavians, and ancient seafarers all wove tales and mythologies about the lights and fires they beheld over water and in fields and mountains. Because they were unable to rationally explain these illuminations, they attributed the mysterious lights to machinations of the gods. Many notable philosophers and explorers, from Aristotle to Christopher Columbus, also observed "cold lights"swhat we know now as bioluminescence. As logic took hold in the age of reason, scientists such as Robert Boyle and Charles Darwin attempted to rationalize the existence and purpose of bioluminescent phenomena. Today, we recognize bioluminescence as the production and emission of light by a living organism. An internal reaction converts chemical energy into lightsa reaction almost always catalyzed by a protein.A large variety of bioluminescent proteins of many biological origins and evolutionary functions have been studied, and their reaction mechanisms, substrates, and bioluminescent properties vary widely. Researchers group bioluminescent proteins into two major categories: photoproteins and luciferases (Figure 1). Photoproteins are bioluminescent proteins that are capable of emitting light in proportion to the concentration of protein, whereas in luciferase-catalyzed reactions, the amount of light emitted is proportional to the concentration...