В настоящей работе была предложена и исследована дробная динамическая система, которая описывает высокочастотную геоакустическую эмиссию с наследственностью. Модель представляет собой систему из двух связных линейных осцилляторов с непостоянными коэффициентами и производными дробного порядка Герасимова-Капуто. Каждый осциллятор описывает дислокационный источник геоакустической эмиссии. Модель строится на основании предположения, что взаимодействие между источниками осуществляется только через излучение. Наличие наследственности указывает на изменение интенсивности такого взаимодействия. Для дробной динамической модели с производными Герасимова-Капуто справедливы локальные начальные условия, т.е. ставится задача Коши. Далее в работе на основе аппроксимации дробных производных Герасимова-Капуто строится нелокальная явная конечно-разностная схема для численного решения задачи Коши. Проводится визуализация численного решения. Были построены с помощью численного алгоритма при различных значениях порядков дробных производных осциллограммы и фазовые траектории в среде компьютерной алгебры Maple. Дана некоторая интерпретация результатов моделирования.
In this work, a fractional dynamic system that describes high-frequency geoacoustic emission with heredity was proposed and investigated. The model is a system of two connected linear oscillators with nonconstant coefficients and Gerasimov-Caputo fractional order derivatives. Each oscillator describes a dislocation source of geoacoustic emission. The model is built on the assumption that interaction between sources occurs only through radiation. The presence of heredity indicates a change in the intensity of such interaction. For a fractional dynamic model with Gerasimov-Caputo derivatives, local initial conditions are valid, i.e. the Cauchy problem is posed. Further in the work, based on the Gerasimov-Caputo approximation of fractional derivatives, a nonlocal explicit finite-difference scheme is constructed for the numerical solution of the Cauchy problem. The numerical solution is visualized. Oscillograms and phase trajectories were constructed using a numerical algorithm for various values of the orders of fractional derivatives in the Maple computer algebra environment. Some interpretation of the simulation results is given.