The aim of the study was to show that the petrophysical parameters, characterizing the shale gas formation, obtained from the various scale well logging and laboratory methods, correlated among themselves. Relationships determined on the basis of mesoscale (logs) and microscale outcomes (laboratory experiments on plugs or crumbs) were also recognizable in nanoscale in the computed tomography results. Selected logs (spectral gamma ray, resistivity, density, neutron, geochemical and acoustic logs) and laboratory methods turned out to be effective in rock typing and description of petrophysical parameters. Nanoscale results processing and interpretation was supported by the sophisticated special software poROSE (version 3.18, AGH University of Science and Technology, Kraków, Poland) to determine special parameters, which correlated with the standard laboratory outcomes. Results of the mercury injection porosimetry, together with adsorption/desorption of nitrogen at 77 K and pressure decay permeability, were used as the basal parameters for building a digital model of shale rock and a detailed description of the Silurian and Ordovician shale formation, treated as the hydrocarbon prospective unconventional reservoirs. Including the computed X-ray tomography results in the correlation analyses, gave the platform to extend the standard 2D approach in building the rock model to novel, 3D and more detailed presentations of rock characteristics.