Cartilage repair is one of the most challenging tasks for the orthopedic surgeons and researchers. The primary challenge lies on the fact that the development of the extracellular matrixes requires specialized cells known as chondrocytes which are sparse in numbers. Chondrocytes’ minimal self-renewal capacity makes it further troublesome and expensive to repair the cartilages. In designing successful substitutes for the cartilages, the selection of materials used for the scaffold fabrication plays the central role among several other important factors in order to ensure the success of the survival and proliferation of any biomaterial substitutes. Since last few decades, polymer and polymers' combination have been extensively used to fabricate such scaffolds and have shown promising results in terms of mechanical integrity and biocompatibility. In an empirical approach, the selection of the most appropriate polymer(s) for cartilage repair is an expensive and time-consuming affair, as traditionally, it requires numerous trials. Moreover, it is humanly impossible to go through the huge library of literature available on the potential polymer(s) and to correlate their physical, mechanical and biological properties that might be suitable for cartilage tissue engineering. With the advancement of machine learning, material design may experience a significant reduction in experimental time and cost. The objective of this study is to implement an inverse design approach to select the best polymer(s) or composites for cartilage repair by using the machine learning algorithms, such as random forest regression (i.e., regression trees) and the multinomial logistic regression. In these algorithms, the mechanical properties of the polymers, which are similar to the cartilages, are considered as the input and the polymer(s)/composites are the predicted output. According to the random forest regression and multinomial logistic regression, the polymer(s)/composites (i.e., the output) having the closest characteristics of the articular cartilages were found to be a composite of polycaprolactone and poly(bisphenol A carbonate) and a blend of polyethylene/polyethylene-graft-poly(maleic anhydride), respectively. These composites exhibit similar biomechanical properties of the natural cartilages and initiate only minimal immune responses in the body environment.