We present new carbon and oxygen isotope curves from sections in the Bakony Mts. (Hungary), constrained by biostratigraphy and magnetostratigraphy in order to evaluate whether carbon isotopes can provide a tool to help establish and correlate the last system boundary remaining undefined in the Phanerozoic as well provide data to better understand the carbon cycle history and environmental drivers during the Jurassic-Cretaceous interval. We observe a gentle decrease in carbon isotope values through the Late Jurassic. A pronounced shift to more positive carbon isotope values does not occur until the Valanginian, corresponding to the Weissert event. In order to place the newly obtained stable to relatively stable δ 13 C values, compounded by a slope which is too slight. There is no clear isotopic marker event for the system boundary. The long-term gradual change towards more negative carbon isotope values through the Jurassic-Cretaceous transition has previously been explained by increasingly oligotrophic condition and lessened primary production. However, this contradicts the reported increase in 87 Sr/ 86 Sr ratios suggesting intensification of weathering (and a decreasing contribution of non-radiogenic hydrothermal Sr) and presumably a concomitant rise in nutrient input into the oceans.The concomitant rise of modern phytoplankton groups (dinoflagellates and coccolithophores) would have also led to increased primary productivity, making the negative carbon isotope trend even more notable. We suggest that gradual oceanographic changes, more effective connections and mixing between the Tethys, Atlantic and Pacific Oceans, would have promoted a shift towards enhanced burial of isotopically heavy carbonate carbon and effective recycling of isotopically light organic matter.These processes account for the observed long-term trend, interrupted only by the Weissert event in the Valanginian.