Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The Alborz Mountains in north Iran underwent several tectono-metamorphic events during opening and closure of the Palaeotethys and Neotethys Oceans. These events are recorded by rare and discontinuously exposed metamorphic rocks, such as the HP-LT Asalem-Shanderman Complex and the Gasht Metamorphic Complex (GMC), that are considered to have been metamorphosed during the closure of the Palaeotethys Ocean. The GMC comprises poorly exposed metasediments and amphibolites metamorphosed under greenschist- to amphibolite-facies conditions, along with smaller volumes of granites. Different dating methods were applied to selected samples of the GMC basement to constrain the geological evolution of this part of the Alborz Mountains. A metagranite yielded two LA-ICP-MS U–Pb zircon ages of 638.4 ± 4.1 Ma and 590.3 ± 4.8 Ma that possibly date protolith crystallisation and later deformation and metamorphism, respectively, and a granite yielded a late Ediacaran 551 ± 2.5 Ma U–Pb zircon crystallisation age. A northern provenance from the basement to the South Caspian Basin can neither be established nor ruled out because no age data are available for this unit. Derivation of the GMC from Turan Block basement is unlikely, as this has a different crustal makeup and is probably composed of Paleoproterozoic and early Neoproterozoic material. The zircon ages are similar to published ages from the Arabian-Nubian Shield, indicating that this part of the Alborz basement may have belonged to the northern margin of Gondwana in the Neoproterozoic before rifting and drifting away along with other Iranian blocks (the Cimmerian terranes) during opening of the Neotethys Ocean. Chemical Th-U-total Pb ages for metamorphic monazites from two metapelite samples yielded a very large range of spot ages, of which c. 80% falls between 200 and 250 Ma, that do not allow to distinguish between Eo-Cimmerian and Main Cimmerian events in the GMC. However, they may indicate that the amphibolite-facies peak metamorphism of the GMC occurred sometime in the Triassic, in any case much later than the Carboniferous metamorphism in the neighbouring Asalem-Shanderman Metamorphic Complex to the north. Peak-metamorphic amphibole from amphibolite, retrograde white mica and foliation-defining biotite from metapelites and magmatic white mica from granite yielded much younger 175.1 ± 0.5 to 177.0 ± 0.4 Ma 40Ar/39Ar plateau ages. The Toarcian 40Ar/39Ar ages for minerals with different nominal closure temperatures reflect very rapid cooling of GMC basement below the Shemshak Group due to extension-triggered uplift. This late Toarcian to Aalenian extension event can be correlated with the regional Mid-Cimmerian unconformity of mid-Bajocian age (c. 170 Ma) that resulted from the tectonic movements causing rapid uplift and erosion. Extension probably started in the western Alborz Mountains in the Toarcian, migrated eastward, and culminated in the Aalenian in the eastern Alborz with the formation of a deep-marine basin. It was probably triggered by the onset of the subduction of Neotethys oceanic crust beneath the Central Iranian Microcontinent.
The Alborz Mountains in north Iran underwent several tectono-metamorphic events during opening and closure of the Palaeotethys and Neotethys Oceans. These events are recorded by rare and discontinuously exposed metamorphic rocks, such as the HP-LT Asalem-Shanderman Complex and the Gasht Metamorphic Complex (GMC), that are considered to have been metamorphosed during the closure of the Palaeotethys Ocean. The GMC comprises poorly exposed metasediments and amphibolites metamorphosed under greenschist- to amphibolite-facies conditions, along with smaller volumes of granites. Different dating methods were applied to selected samples of the GMC basement to constrain the geological evolution of this part of the Alborz Mountains. A metagranite yielded two LA-ICP-MS U–Pb zircon ages of 638.4 ± 4.1 Ma and 590.3 ± 4.8 Ma that possibly date protolith crystallisation and later deformation and metamorphism, respectively, and a granite yielded a late Ediacaran 551 ± 2.5 Ma U–Pb zircon crystallisation age. A northern provenance from the basement to the South Caspian Basin can neither be established nor ruled out because no age data are available for this unit. Derivation of the GMC from Turan Block basement is unlikely, as this has a different crustal makeup and is probably composed of Paleoproterozoic and early Neoproterozoic material. The zircon ages are similar to published ages from the Arabian-Nubian Shield, indicating that this part of the Alborz basement may have belonged to the northern margin of Gondwana in the Neoproterozoic before rifting and drifting away along with other Iranian blocks (the Cimmerian terranes) during opening of the Neotethys Ocean. Chemical Th-U-total Pb ages for metamorphic monazites from two metapelite samples yielded a very large range of spot ages, of which c. 80% falls between 200 and 250 Ma, that do not allow to distinguish between Eo-Cimmerian and Main Cimmerian events in the GMC. However, they may indicate that the amphibolite-facies peak metamorphism of the GMC occurred sometime in the Triassic, in any case much later than the Carboniferous metamorphism in the neighbouring Asalem-Shanderman Metamorphic Complex to the north. Peak-metamorphic amphibole from amphibolite, retrograde white mica and foliation-defining biotite from metapelites and magmatic white mica from granite yielded much younger 175.1 ± 0.5 to 177.0 ± 0.4 Ma 40Ar/39Ar plateau ages. The Toarcian 40Ar/39Ar ages for minerals with different nominal closure temperatures reflect very rapid cooling of GMC basement below the Shemshak Group due to extension-triggered uplift. This late Toarcian to Aalenian extension event can be correlated with the regional Mid-Cimmerian unconformity of mid-Bajocian age (c. 170 Ma) that resulted from the tectonic movements causing rapid uplift and erosion. Extension probably started in the western Alborz Mountains in the Toarcian, migrated eastward, and culminated in the Aalenian in the eastern Alborz with the formation of a deep-marine basin. It was probably triggered by the onset of the subduction of Neotethys oceanic crust beneath the Central Iranian Microcontinent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.