We show that the set of cusp shapes of hyperbolic tunnel number one manifolds is dense in the Teichmüller space of the torus. A similar result holds for tunnel number n manifolds. As a consequence, for fixed n, there are infinitely many hyperbolic tunnel number n manifolds with at most one exceptional Dehn filling. This is in contrast to large volume Berge knots, which are tunnel number one manifolds, but with cusp shapes converging to a single point in Teichmüller space.