BackgroundDescriptive norms (what other people do) relate to individual-level dietary behaviour and health outcome including overweight and obesity. Descriptive norms vary across residential areas but the impact of spatial variation in norms on individual-level diet and health is poorly understood. This study assessed spatial associations between local descriptive norms for overweight/obesity and insufficient fruit intake (spatially-specific local prevalence), and individual-level dietary intakes (fruit, vegetable and sugary drinks) and 10-year change in body mass index (BMI) and glycosylated haemoglobin (HbA1c).MethodsHbA1c and BMI were clinically measured three times over 10 years for a population-based adult cohort (n = 4056) in Adelaide, South Australia. Local descriptive norms for both overweight/obesity and insufficient fruit intake specific to each cohort participant were calculated as the prevalence of these factors, constructed from geocoded population surveillance data aggregated for 1600 m road-network buffers centred on cohort participants’ residential addresses. Latent growth models estimated the effect of local descriptive norms on dietary behaviours and change in HbA1c and BMI, accounting for spatial clustering and covariates (individual-level age, sex, smoking status, employment and education, and area-level median household income).ResultsLocal descriptive overweight/obesity norms were associated with individual-level fruit intake (inversely) and sugary drink consumption (positively), and worsening HbA1c and BMI. Spatially-specific local norms for insufficient fruit intake were associated with individual-level fruit intake (inversely) and sugary drink consumption (positively) and worsening HbA1c but not change in BMI. Individual-level fruit and vegetable intakes were not associated with change in HbA1c or BMI. Sugary drink consumption was also not associated with change in HbA1c but rather with increasing BMI.ConclusionAdverse local descriptive norms for overweight/obesity and insufficient fruit intake are associated with unhealthful dietary intakes and worsening HbA1c and BMI. As such, spatial variation in lifestyle-related norms is an important consideration relevant to the design of population health interventions. Adverse local norms influence health behaviours and outcomes and stand to inhibit the effectiveness of traditional intervention efforts not spatially tailored to local population characteristics. Spatially targeted social de-normalisation strategies for regions with high levels of unhealthful norms may hold promise in concert with individual, environmental and policy intervention approaches.