), respectively, from winter to spring. In addition, the bacterial secondary production to primary production (BSP:PP) ratio decreased from 3.7 to 0.2 in Reloncaví Fjord, suggesting a transition from microbial to classical pelagic food webs. The higher solar radiation and extended photoperiod of springtime promoted the growth of diatoms in a nutrient-replete water column. Allochthonous (river discharge) and autochthonous (phytoplankton exudates) organic matter maintained high year-round bacteria biomass and secondary production. In spring, grazing pressure from zooplankton on the microplankton (largely diatoms) resulted in the relative dominance of the classical food web, with increased export production of zooplankton faecal pellets and ungrazed diatoms. Conversely, in winter, zooplankton grazing, mainly on nanoplankton, resulted in a relative dominance of the microbial loop with lower export production than found in spring. Carbon fluxes and fjord-system functioning are highly variable on a seasonal basis, and both the multivorous trophic webs and the carbon export were more uncoupled from local PP than coastal areas.