Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Anthropogenic activities like overgrazing, deforestation and mismanaged land use accelerate soil erosion (SE), causing nutritional and organic matter loss. In this study, we predicted the annual rate of soil loss in the Salt Range, extending south from the Potohar plateau, Pakistan, using the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model parameters and erosion probability zones were estimated using remote sensing and Geo‐Spatial methods. The annual average soil loss rates were calculated by considering five geo‐environmental factors, that is, slope length and steepness (LS), rainfall erosivity (R), cover management (C), soil erodibility (K), and conservation practice (P) range from 0–559 527, 1404–4431, 0–1, −0.14 to 1.64, and 0.2–122 respectively. This research determined that the yearly average rate of SE in the Salt Range varies from over 50 to above 350 . The distribution of land area across different SE probability zones reveals that a small portion (2.11%) is classified as High, a moderate portion (7.13%) falls under the category of Moderate, while the majority (90.7%) is classified as Low in terms of proneness towards erosion. The land devoid of vegetation and characterized by steep slopes is especially prone to SE. The Salt Range is highly vulnerable to SE risk due to climatic variations and improper land use practices. The result provides a spatial distribution of SE across the salt range, utilized for management planning processes and conservation at the policy level among decision‐makers and land‐use planners.
Anthropogenic activities like overgrazing, deforestation and mismanaged land use accelerate soil erosion (SE), causing nutritional and organic matter loss. In this study, we predicted the annual rate of soil loss in the Salt Range, extending south from the Potohar plateau, Pakistan, using the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model parameters and erosion probability zones were estimated using remote sensing and Geo‐Spatial methods. The annual average soil loss rates were calculated by considering five geo‐environmental factors, that is, slope length and steepness (LS), rainfall erosivity (R), cover management (C), soil erodibility (K), and conservation practice (P) range from 0–559 527, 1404–4431, 0–1, −0.14 to 1.64, and 0.2–122 respectively. This research determined that the yearly average rate of SE in the Salt Range varies from over 50 to above 350 . The distribution of land area across different SE probability zones reveals that a small portion (2.11%) is classified as High, a moderate portion (7.13%) falls under the category of Moderate, while the majority (90.7%) is classified as Low in terms of proneness towards erosion. The land devoid of vegetation and characterized by steep slopes is especially prone to SE. The Salt Range is highly vulnerable to SE risk due to climatic variations and improper land use practices. The result provides a spatial distribution of SE across the salt range, utilized for management planning processes and conservation at the policy level among decision‐makers and land‐use planners.
Foreign direct investment (FDI) by transnational companies (TNCs) is the primary indicator of urban globalization. The initial publication on the topic of remote sensing and geographic information system-based urban globalization research was published in 1981. However, the number of publications on this topic remains relatively limited. Despite some advances in the field in recent decades, there is currently no comprehensive review of related research, and it is not clear how the different perspectives and views have been developed. Furthermore, previous literature reviews on the utilization of remote sensing and GIS technology in urban development have predominantly employed quantitative methodologies, which has resulted in a paucity of qualitative analysis. In order to address these shortcomings, this paper employs a mixed-methods approach, integrating quantitative and qualitative analyses. This entails the utilization of a combination of the scientometric method and a qualitative literature review method. The findings are as follows: (1) The number of publications is still relatively limited, and research in this area is still in its infancy. (2) Some of the articles are evidently interdisciplinary in nature. (3) Progress has been made in terms of geographic visualization of FDI, macro-environmental research at different scales, global value chains, the micro-geography of TNCs, and globalization of the geo-information industry. (4) The spatial and temporal development pattern, location, and accessibility of FDI have constituted a significant area of research interest in the past. Similarly, the relationships between FDI and regional development, urban growth, land use, and environmental change have emerged as prominent research directions. China’s Belt and Road Initiative is an emerging popular topic. (5) In recent years, there has been a notable increase in the number of papers employing multi-source data and multi-method approaches. (6) The extent of research collaborations between countries is relatively limited, with the majority of such collaborations occurring within the past five years. Finally, based on these research findings, this paper suggests future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.