SUMMARYPearl millet [Pennisetum glaucum (L) R. Br.] is an important cereal crop in Niger, West Africa and a potential crop for the United States of America (USA). Only a few studies have been conducted in either country to identify the optimum planting dates for high and stable yields, in part because planting date experiments are resource-intensive. Crop simulation models can be an alternative research tool for determining optimum planting dates and other management practices. The objectives of the present study were to evaluate the performance of the Cropping System Simulation Model (CSM)–CERES-Millet model for two contrasting environments, including Mead, Nebraska, USA and Kollo, Niger, West Africa and to use the model for determining the optimum planting dates for these two environments. Field experiments were conducted in both environments to study the impact of nitrogen fertilizer on grain yield of three varieties in Kollo and three hybrids in Mead and their associated growth and development characteristics. The CSM–CERES-Millet model was able to accurately simulate growth, development and yield for millet grown in these two contrasting environments and under different management practices that included several genotypes and different nitrogen fertilizer application rates. For Kollo, the optimum planting date to obtain the maximum yield was between 13 and 23 May for variety Heini Kirei, while for the other varieties the planting dates were between 23 May and 2 June. For Mead, the planting date analysis showed that the highest simulated yield was obtained, on average, between 19 and 29 June for hybrid 59022A×89-083 and 1361M×6Rm. Further studies should focus on evaluation and application of the millet model for other agroclimatic regions where pearl millet is an important crop.