From their first commercialisation in the mid-1990s, genetically engineered crops (also known as "transgenic" or "genetically modified" plants) have been approved for commercial release in an increasing number of countries, for planting, entering in the composition of foods and feeds, or use in industrial processing. The majority of these productions are for soybean, maize, cotton and rapeseed (canola) bearing pest resistance and herbicide tolerance traits, aiming to improve yields and reduce the costs of production. Other transgenic crops that are increasingly grown to date comprise lucerne (alfalfa), sugar beet, sugarcane, papaya, safflower, potato, eggplant, as well as pumpkin, apple and pineapple in smaller areas. Other traits are increasingly introduced in engineered plants, adapting them to biotic or abiotic stress, such as resistance to drought or tolerance to salt in the growing environment, or changing a characteristic, e.g. modified oil content, reduced lignin content, non-browning or nutritional quality (biofortification). Thus, transgenic crops, where adopted and available on the market, enlarge possibilities for farmers, industry and consumers. They can play a part in addressing global concerns such as the rising need for food and feed in the growing population context or the necessary adaptation of agriculture for better resilience to climate change.Modern biotechnologies are applied to plants (crops, flowers and trees) but also animals and micro-organisms. The safety of the resulting genetically engineered organisms, when released in the environment for their use in agriculture, forestry, fishery, the food and feed industry, biofuel production or other applications, represents a challenging issue. A scientifically sound approach to their risk assessment should inform biosafety regulators and support national decisions regarding their possible market release. Genetically engineered products are rigorously assessed by their developers during their elaboration and by governments when ready for commercial use, to ensure high safety standards for the environment, human food and animal feed. Such assessments are considered essential for healthy and sustainable agriculture, industry and trade.In 2019, according to the annual report of the International Service for the Acquisition of Agri-biotech Applications, the five main producers of genetically engineered crops were the United States, Brazil, Argentina, Canada and India (listed by decreasing area) covering a combined 170 million hectares representing more than 90% of the global transgenic crop area. Among the 29 countries having grown genetically engineered crops in that year, 9 of them were OECD countries, listed by decreasing area as follows: the