2017
DOI: 10.1590/1808-057x201703760
|View full text |Cite
|
Sign up to set email alerts
|

Geographically Weighted Logistic Regression Applied to Credit Scoring Models

Abstract: This study used real data from a Brazilian financial institution on transactions involving Consumer Direct Credit (CDC), granted to clients residing in the Distrito Federal (DF), to construct credit scoring models via Logistic Regression and Geographically Weighted Logistic Regression (GWLR) techniques. The aims were: to verify whether the factors that influence credit risk differ according to the borrower's geographic location; to compare the set of models estimated via GWLR with the global model estimated vi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
5
0
4

Year Published

2019
2019
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 15 publications
(9 citation statements)
references
References 15 publications
0
5
0
4
Order By: Relevance
“…Em que pesem essas dificuldades, importantes avanços metodológicos, tecnológicos e computacionais têm contribuído para a criação de diversas ferramentas de mensuração de riscos, proporcionando informações acuradas e detalhadas que têm gerado significativos ganhos para a gestão financeira das organizações (Albuquerque, Medina & Silva, 2017).…”
Section: Elementos Teóricos Da Pesquisaunclassified
“…Em que pesem essas dificuldades, importantes avanços metodológicos, tecnológicos e computacionais têm contribuído para a criação de diversas ferramentas de mensuração de riscos, proporcionando informações acuradas e detalhadas que têm gerado significativos ganhos para a gestão financeira das organizações (Albuquerque, Medina & Silva, 2017).…”
Section: Elementos Teóricos Da Pesquisaunclassified
“…In comparison to the general weights function where the b represents a single integer, the b i(k) parameter here is variable with k representing the number closest to point i (Albuquerque et al 2017). The optimum bandwidths are finally chosen through the minimisation of the Akaike Information Criterion (AIC) (Fotheringham et al 2003, Fábián et al 2014, Albuquerque et al 2017.…”
Section: Relationship Testingmentioning
confidence: 99%
“…where represents the distance between the location ( , V ) and the location of ( , V ), which is equal to 2 , and h here refers to the nonnegative parameter, called bandwidth (fixed or adaptive). For more estimation details about GWR model, the reader can refer to Fotheringham et al [46], Huang et al [40], and Albuquerque et al [47].…”
Section: Geographically Weighted Regression Modelmentioning
confidence: 99%
“…After differentiating (6) in function of ( , V ) and equating to zero, the model parameters can be estimated using interactive numerical methods [47]. The model can be realized by GWR4 software.…”
Section: Geographically Weighted Logisticmentioning
confidence: 99%
See 1 more Smart Citation