Borehole destabilization damage is an important factors affecting gas extraction efficiency. To derive the fracture development law, strain, and energy evolution characteristics of different borehole diameters, uniaxial compression experiments were conducted on prefabricated rock specimens with different borehole diameters. The results showed that the elastic energy and dissipation energy of the specimens with different pore diameters changed with the compression process, and the energy distribution inside the specimens. The results show that as the pore size of the specimen increases, the strain area damaged by tensile fracture gradually decreases and the strain area damaged by shear fracture gradually increases, and the damage of the dominant specimen gradually evolves from tensile fracture as the dominant factor to tensile fracture and shear fracture together as the dominant factor and finally to shear fracture as the dominant factor. For the whole compression process of pore size rock specimens, the total energy curve shows a nonlinear growth trend, and the elastic energy curve shows a nonlinear growth trend before the specimen damage and a cliff‐type decrease after the specimen damage. From the perspective of energy distribution, the elastic energy storage limit of the specimen decreases with the increase of the specimen pore size, the energy distribution law inside the rock specimen with pores changes, and the total energy absorbed from the outside gradually changes to the dissipated energy, resulting in an increasing proportion of dissipated energy, indicating that the larger the pore size, the larger the plastic deformation, and the more obvious ductile damage characteristics of the specimen with pores will be shown. The research analyzes the causes of destabilization of rock samples with different hole diameters and provides some theoretical guidance for the study of gas extraction drilling stability.