Vein type tungsten mineralization at Degana is genetically and spatially associated with the Degana Granite. The deposit is characterized by pervasive wall rock alteration around the mineralized quartz veins. Laterally three different alteration zones, greisen, silicification and potassic zones, are marked based on the field features, mineral assemblages and geochemical characteristics. In the present paper, systematic mineralogical and chemical variation in these alteration zones is reported. Thick mono-mineralic (zinnwaldite) selvages around the veins characterize the deposit. Plagioclase and alkali feldspar are low in the greisen zones while K-feldspar shows more increase than plagioclase in the potassic zone. Quartz is uniformly high in all the alteration zones, but it shows an anomalous value in the silicification zone. Al 2 O 3 concentration shows initial depletion in greisen zone with gradual increase away from the contact. MgO and FeO are higher in greisen zone than silicification and potassic zones. The potassic zone is characterized by the depletion of Na 2 O and higher value of K 2 O.The common presence of topaz and fluorite as both primary and secondary minerals and fluorine-bearing micas suggest fluorine partitioning in substantial amount between granitic melt and coexisting aqueous fluid phase and higher HF activity during the evolution of hydrothermal fluid. The mutual relationship of the fluorine minerals (topaz and fluorite) in the different alteration zones suggests an increase in the Ca 2+ activity and decrease of H + activity during the fluid evolution from greisenization towards alkali-metasomatised granite and the fluid is assumed to change from low to high activity ratio of Ca 2+ /H + .