H-pit is one of the significant ore lenses of the Chatree mine in Thailand. Au-Ag mineralization mainly occurs as veins, stockworks, and minor breccias hosted by volcanic and volcaniclastic rocks. Disseminated pyrites are commonly present near mineralized veins in the hanging wall zone. This study aims to assess the acid rock drainage (ARD) potential and heavy metal content from the H-pit area. The results indicate that hanging wall rock is a potential acid-forming (PAF) material related to disseminated pyrite formed by hydrothermal alteration. In contrast, the footwall and ore zone materials are classified as non-acid forming (NAF). Because the ore zone has calcite in the veins, it may help buffer the material’s acidity. The results of heavy metal analysis reveal that the ore zone has significantly higher contents of As, Cd, Cu, Pb, and Zn than those in the hanging wall and footwall zones. Moreover, the hanging wall and footwall materials have exceeding values for As, Cd, and Zn compared to those in typical igneous rocks. These heavy metals are interpreted to be sourced from (1) the primary composition in base metal sulfides (e.g., Cu, Pb, and Zn), (2) the substitution of trace elements in sulfides (e.g., As and Cd), and (3) the substitution of trace elements in calcite (e.g., Mn), as evidenced in the EPMA results. In conclusion, the hanging wall rocks in this study containing high sulfur in proximity to the ore zone are a PAF material with heavy metal contaminant sources, whereas the footwall and ore zone materials have a lower potential to be such sources at the Chatree mine.