Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Four major uranium districts in Tertiary rocks of central Wyoming are in fluvial sandstones derived from the granitic rock of the ancestral Sweetwater arch and deposited in adjacent intermontane basins. Sediment transported southward into the Great Divide basin was deposited on an apron of alluvial fans. Sedimentation in the Gas Hills area of the Wind River basin was on an alluvial fan in which ridges of older rock disrupted the normal development of the fan. Sediment in west Shirley basin was deposited on an alluvial fan, but in east Shirley basin and in the Powder River basin sedimentation was channel and flood-basin deposits of a meandering stream. The sandstones are subarkosic to arkosic, medium grained to conglomeratic, angular and poorly sorted. Sandstones intertongue with green or carbonaceous shales. Sedimentation was in a warm, humid climate with abundant vegetation. Decay of the organic mate rial created reducing conditions in the sediment which caused partial carbonization of some of the plant debris, formation of pyrite, and precipitation of uranium minerals. Following burial, uplift-induced changes in the hydrodynamic system caused an invasion of the reduced sediment by oxygenated water far below the static water table. This caused destruction of carbonaceous material, oxidation of pyrite, and accumulation of uranium and other susceptible metals in a wave or front just ahead of the invading oxidizing environment. The invading oxidation was a dynamic, expanding process which moved through the permeable zones of the fluvial sequence until its dimensions measured miles in areal extent and hundreds of feet in thickness. This geochemical cell had a sharply defined boundary produced by biochemically controlled changes in physical and chemical conditions. Oxygenated waters, aided by Thiobacillus ferrooxidans, oxidized pyrite to produce sulfuric acid and ferric sulfate, a strong oxidizer, which leached uranium and other susceptible elements. In the reducing part of the cell, anaerobic bacteria, including the sulfate reducer Oesulfovlbrio, consumed the organic material in the sediments and the sulfates from the oxidizing area, to produce hydrogen, hydrogen sulfide, and a mildly alkaline, strongly reducing environment which precipitated pyrite, uranium, and other metals on the front. Migration of the cell was controlled by the permeability of the sandstone and by availability of carbon and pyrite. The cell advanced faster in the more permeable zones and was retarded in zones of reduced permeability and areas of greater pyrite and carbon content. The position of the mineral front was a function of the initial sedimentary pattern. Sedimentation, alteration, and mineralization in the Gas Hills and Shirley basin districts illustrate these conditions and processes.
Four major uranium districts in Tertiary rocks of central Wyoming are in fluvial sandstones derived from the granitic rock of the ancestral Sweetwater arch and deposited in adjacent intermontane basins. Sediment transported southward into the Great Divide basin was deposited on an apron of alluvial fans. Sedimentation in the Gas Hills area of the Wind River basin was on an alluvial fan in which ridges of older rock disrupted the normal development of the fan. Sediment in west Shirley basin was deposited on an alluvial fan, but in east Shirley basin and in the Powder River basin sedimentation was channel and flood-basin deposits of a meandering stream. The sandstones are subarkosic to arkosic, medium grained to conglomeratic, angular and poorly sorted. Sandstones intertongue with green or carbonaceous shales. Sedimentation was in a warm, humid climate with abundant vegetation. Decay of the organic mate rial created reducing conditions in the sediment which caused partial carbonization of some of the plant debris, formation of pyrite, and precipitation of uranium minerals. Following burial, uplift-induced changes in the hydrodynamic system caused an invasion of the reduced sediment by oxygenated water far below the static water table. This caused destruction of carbonaceous material, oxidation of pyrite, and accumulation of uranium and other susceptible metals in a wave or front just ahead of the invading oxidizing environment. The invading oxidation was a dynamic, expanding process which moved through the permeable zones of the fluvial sequence until its dimensions measured miles in areal extent and hundreds of feet in thickness. This geochemical cell had a sharply defined boundary produced by biochemically controlled changes in physical and chemical conditions. Oxygenated waters, aided by Thiobacillus ferrooxidans, oxidized pyrite to produce sulfuric acid and ferric sulfate, a strong oxidizer, which leached uranium and other susceptible elements. In the reducing part of the cell, anaerobic bacteria, including the sulfate reducer Oesulfovlbrio, consumed the organic material in the sediments and the sulfates from the oxidizing area, to produce hydrogen, hydrogen sulfide, and a mildly alkaline, strongly reducing environment which precipitated pyrite, uranium, and other metals on the front. Migration of the cell was controlled by the permeability of the sandstone and by availability of carbon and pyrite. The cell advanced faster in the more permeable zones and was retarded in zones of reduced permeability and areas of greater pyrite and carbon content. The position of the mineral front was a function of the initial sedimentary pattern. Sedimentation, alteration, and mineralization in the Gas Hills and Shirley basin districts illustrate these conditions and processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.